ЛЕДЯНАЯ


СИМФОНИЯ
Фигурное катание доступно каждому

Фигурное катание – это физическое совершенствование, оздоровление, красота, эстетика. Все, что нужно, одеть коньки и отпустить борт, отправившись в покорение такого интересного и эмоционального вида спорта.

Скольжение фигуриста по дуге в одноопорном положении является основным режимом движения и характеризуется такими величинами, как скорость, ускорение, радиус дуги скольжения, сила инерции, сила давления конька на лед, сила трения. Для того чтобы определить, как они связаны, рассмотрим схему одноопорного скольжения (рис. 4).

На тело фигуриста, скользящего по. дуге окружности радиусом ρ, имеющего в данный момент скорость V, действуют: сила веса Р, сила трения F, направленная в сторону, противоположную движению; касательная сила инерции Jτ, параллельная оси Ох и направленная противоположно замедлению; нормальная (центробежная) сила инерции Jn, параллельная оси Оу; опорная реакция N, равная давлению фигуриста на лед и направленная по продольной оси вверх.

В рассматриваемый момент тело фигуриста находится в координатной плоскости zOy, продольная ось наклонена на угол а к вертикали: l — расстояние от о.ц.т. тела до точки опоры О.

Составив уравнения равновесия сил и моментов и преобразовав их, получим шесть уравнений, анализируя которые можно сделать ряд важных практических выводов.

Важной характеристикой скольжения является наклон продольной оси тела к поверхности льда. Он определяет реберность скольжения — одно из основных условий высокого качества выполнения всего комплекса элементов фигурного катания.

где ρ — радиус кривизны следа.

В формулу не входит масса тела. Отсюда первый вывод: угол наклона продольной оси тела фигуриста зависит только от величины радиуса дуги и скорости скольжения.

Из формулы (1) можно сделать и другой вывод: угол наклона продольной оси увеличивается пропорционально квадрату скорости скольжения и 'уменьшается с увеличением радиуса дуги скольжения.

Известно, что при малых углах наклона опорная нога может оставить на льду двухреберный след, а это грубая ошибка.

Формула (1) связывает между собой четыре величины. Каждую из них можно выразить через остальные. Интерес представляют выражения для скорости скольжения (2) и радиуса дуги скольжения (3).

При изучении техники скольжения полезно знать выражение силы взаимодействия конька со льдом.

Величина давления конька опорной ноги на лед определяется формулой:

 

Так как косинус угла всегда меньше единицы, то из формулы (4) следует вывод: при скольжении по дуге в состоянии динамического равновесия давление конька на лед всегда больше веса фигуриста и равно ему при скольжении по прямой.

Для более детального анализа зависимости величины давления конька на лед воспользуемся следующим соотношением:

 

Как видим, давление на лед зависит от массы тела фигуриста, квадрата скорости, радиуса дуги скольжения и синуса угла наклона продольной оси тела фигуриста. Давление возрастает с увеличением массы тела фигуриста и скорости его скольжения и убывает с увеличением радиуса дуги и угла наклона продольной оси тела.

Сложность выполнения обязательных фигур, особенно в форме восьмерки, заключается в сохранении такой скорости скольжения, которая обеспечивает реберность и достаточно высокое качество поворотов на протяжении всей фигуры. Рассмотрим причины, вызывающие замедление скольжения при условии, что фигурист не сгибает и не разгибает опорную ногу. Кроме силы сопротивления воздуха тормозящей силой при скольжении является сила трения. Связь величины замедления с коэффициентом трения конька о лед может быть выражена следующим образом:

 

Ясно, что при одноопорном скольжении замедление прямо пропорционально давлению на лед, коэффициенту трения и обратно пропорционально массе тела.

В ряде случаев удобнее воспользоваться другой формулой (6).

Поскольку . то после преобразования получаем:

 

Так как на практике величина cos а меняется незначительно, а ускорение силы тяжести g — величина постоянная для данного места, то замедление зависит главным образом от коэффициента трения конька опорной ноги о лед.

Коэффициент трения скольжения зависит от многих причин: от качества льда, его температуры и состава воды, от материала, из которого сделано лезвие конька, и заточки. Чем ниже температура льда, тем больше коэффициент трения. Лед, полученный из жесткой воды, создает большее сопротивление скольжению, чем лед из мягкой воды. При низкой температуре лед тверже, а при повышенной мягче. В первом случае скольжение затрудняется из-за твердости льда, а во втором — из-за того, что лезвие конька глубоко врезается в мягкий лед.

Коэффициент трения на хорошем льду минимален, значит, и замедление при скольжении меньше. Коэффициент трения стали о лед колеблется в пределах 0,01—0,03.

Измерения показывают, что при выполнении круга вперед-наружу средние величины скорости на каждой четверти окружности равняются: V1 = 2,2 м/с, V2=l,87 м/с, V3=1,55 м/с, V4= 1,34 м/с.

Как видим, характер уменьшения скорости соответствует рав-нозамедленному движению. Другими словами, у квалифицированных фигуристов замедление при простом скольжении по дугам практически постоянно.

При выполнении сложных фигур (простая восьмерка со скобками, восьмерка с двукратными тройками и особенно восьмерка назад с тройкой) характер падения величины скорости скольжения нелинейный. В первой половине фигуры уменьшение скорости скольжения незначительно, однако во второй половине начинает проявляться следующая зависимость: уменьшение скорости скольжения вызывает уменьшение угла наклона конька ко льду и переход к скольжению на плоскости конька. Отсюда как следствие увеличивается площадь опоры и сила трения. В результате при выполнении сложных фигур скольжение фигуриста не равноза-медленно и скорость убывает нелинейно. Чем ниже квалификация спортсмена, тем ярче выражена нелинейность, тем сильнее замедление в конце фигуры.

У фигуристов высокого, класса благодаря качественному реберному скольжению, отсутствию скобления льда в поворотах и умению набирать ход падение скорости от начала фигуры к концу выражено слабее.